职       称:教授

研究方向:土壤学、生物地球化学、森林生态学

办公电话:0431-85098618

办公地点:地理楼

电子邮件:baie612@nenu.edu.cn

   个人简介

简介: 白娥,东北师范大学教授,博士生导师,地理科学学院院长。入选国家自然科学基金委杰青、国家自然科学基金委优青、中国科学院“百人计划”、中组部万人计划“青年拔尖”等人才项目。主要从事土壤地理学和全球变化研究,采用稳定性同位素技术研究土壤生物地球化学循环、生态系统固碳及其影响机制、全球变化及生态系统功能评价,服务国家双碳战略和生态文明建设。先后主持科技部青年973项目等国家级项目十余项,在Nature Communications, Science Advances等SCI期刊发表论文100余篇,担任Global Change Biology、Ecology Letters、Global Biogeochemical Cycles等八个SCI期刊副主编或编委、《植物生态学报》等中文期刊编委。中国科学院百篇优博指导教师、曾连续两年获得中国科学院优秀导师奖。2020-2022年连续三年入选由斯坦福大学发布的全球前2%顶级科学家榜单。吉林省第十四届人民代表大会常委,吉林省第十四届人民代表大会环境与资源保护委员会委员。

 

教育背景:

2001-2007, 博士, Ecosystem Science & Management, Texas A&M University, College Station, TX, USA

1996-2000, 学士, 南开大学环境科学系

 

工作经历:

12/2018-至今, 教授,东北师范大学地理科学学院

02/2010–12/2018,研究员, 中国科学院沈阳应用生态研究所

01/2008–02/2010,博士后, Department of Land, Air and Water Resources, University of California, Davis, USA

09/2007–12/2007,博士后, Department of Ecosystem Science & Management, Texas A&M University, College Station, TX, USA

 

进行中项目:

• 2022-2026: 东北天然次生林生态产品形成和维持的凋落物-土壤微生物作用机制,重点研发项目《东北森林生态产品供给能力提升技术及示范》子课题,2022YFF1300501,子课题负责人

• 2020-2023: 活性氮在森林土壤中的存留机制,国家自然科学基金委面上项目,41971058, 项目负责人

• 2019-2024: 重大生态工程的温室气体效应,重点研发项目《典型脆弱区生态工程气候效应及其适应全球变化对策研究》子课题《重大生态工程的温室气体效应》,2019YFA0607301,课题负责人

• 2024-2028: 土壤微生物驱动的养分循环,国家自然科学基金委杰出青年基金,42325101, 项目负责人

 

已结题项目:

• 2016-2020:同位素示踪微生物氮在森林土壤中的去向,中科院前沿科学重点研究计划,QYZDB-SSW-DQC006,项目负责人

• 2015-2020:中组部万人计划“青年拔尖”人才资助计划,项目负责人

• 2016-2020:中国北方森林和草地生态系统碳氮耦合循环与碳源汇效应研究,国家重点研发计划,2016YFA060080,课题骨干

• 2016-2018:国家自然科学基金委优青项目,项目负责人

• 2014-2018:森林生态系统活性氮循环机制及其环境效应研究,科技部青年973项目,2014CB954400,项目负责人

• 2014-2018:土壤-微生物系统功能及其调控土壤生物,中国科学院战略性先导科技专项(B类),XDB15010301,课题骨干

• 2012-2014: CO2升高对温带森林土壤氮循环多过程的影响机制,国家自然科学基金委面上项目,41175138, 项目负责人

• 2011-2015: 天然森林和草地土壤固碳功能与固碳潜力研究,科技部973项目,2011CB403202,课题骨干

• 2012-2014: 新碳在大气-植物-土壤系统中的分配机制-应用同位素脉冲标记技术,国家自然科学基金委青年项目,31100326,项目负责人

• 2010-2014: 全球变化背景下东北森林生态系统的氮循环和反硝化作用研究,中科院百人计划项目,KZCX2-YWBR-20,项目负责人

 

已发表SCI文章

 

1) Yang, Q.#, Liu, Z., Bai, E.* (2023). Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition. Global Change Biology, DOI: 10.1111/gcb.16915.

2) Zhang, K., Liu, R.*, Bai, E.*, Zhao, Z., Peyrotty, G., Fathy, D., Chang, Q., Liu, Z., Yang, K., Xu, C., Liu, Z. (2023). Biome responses to a hydroclimatic crisis in an Early Cretaceous (Barremian-Aptian) subtropical inland lake ecosystem, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 622, 111596.

3) Yang, Q.#, Liu, Z., Houlton, B. Z., Gao, D.#, Chang, Q., Li, H., Fan, X.#, Liu, B.#, & Bai, E.* (2023). Isotopic evidence for increased carbon and nitrogen exchanges between peatland plants and their symbiotic microbes with rising atmospheric CO2 concentrations since 15,000 cal. year BP. Global Change Biology, 00, 1–12.

4) Sun, L. #, Li, J., Qu, L. #, Wang, X. #, Sang, C. #, Wang, J., Sun, M., Wanek, W., Moorhead, D., Bai, E., Wang, C. #* (2023). Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments, Geoderma, 432,116416.

5) Zhang, X., Pei, G., Zhang, T., Fan, X., Liu, Z., Bai, E.* (2023). Erosion effects on soil microbial carbon use efficiency in the mollisol cropland in northeast China. Soil Ecology Letters, 5, 230176.

6) Chang, Q., Xu, W., Peng, B. #, Jiang, P., Li, S#., Wang, C. #, Bai, E.* (2022). Dynamic and allocation of recently assimilated carbon in Korean pine (Pinus koraiensis) and birch (Betula platyphylla) in a temperate forest. Biogeochemistry 160, 395–407.

7) Gao, D.#, Bai, E.*, Wang, S., Zong, S., Liu, Z., Fan, X.#, Zhao, C. and Hagedorn, F. (2022). Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Global Change Biology, 28, 6728–6740.

8) Liu, B.#, Gao, D.#, Chang, Q., Liu, Z., Fan, X.#, Meng, D.#, Bai, E.* (2022). Leaf enzyme plays a more important role in leaf nitrogen resorption efficiency than soil properties along an elevation gradient. Journal of Ecology, 110, 2603–2614.

9) Ji, W., Huang, Y., Qian, X., Bai, E., Smith, CK, Li, Z. * (2022). Conversion from farmland to orchards has minor effects on nitrogen biological processes in deep loess deposits. Agriculture, Ecosystems & Environment, 338, 108111.

10) Harris, E., Yu, L., Wang, Y., Mohn, J., Henne, S., Bai, E., Barthel, M., Bauters, M., Boeckx, P., Dorich, C., Farrell, M., Krummel, P., Loh, Z., Reichstein, M., Six, J., Steinbacher, M., Wells, N., Bahn, M., Rayner, P. (2022). Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nature Communications, 13, 4310.

11) Cong, Y., Saurer, M., Bai, E., Siegwolf, R., Gessler, A., Liu, K., Han, H., Dang, Y., Xu, W., He, H.*, Li, M.* (2022). In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees. Tree Physiology, tpac048.

12) Wang, Z.#, Yang, J.#, Wang, C.#, Bai, E.* (2022). Oxygen gas derived oxygen does not affect the accuracy of 18O-labelled water approach for microbial carbon use efficiency. Soil Biology and Biochemistry. 168: 108649.

13) Yang, Q.#, Li, H., Zhao, H.*, Chambers, F., Bu, Z., Bai, E., Xu, G. (2022). Plant assemblages-based quantitative reconstruction of past mire surface wetness: A case study in the Changbai Mountains region, Northeast China. Catena. 216: 106412.

14) Cao, Y.#, Liu, X., Wang, C., Bai, E., Wu, N*. (2022). Climate-controlled biogeochemical cycle of rare earth elements in soil of northern China. Ecological Processes. 11, 1.

15) Gurmesa, G., Wang, A., Li, S., Peng, S., Vries, W., Gundersen, P, Ciais, P. Phillips, O., Hobbie, E., Zhu, W., Nadelhoffer, K., Xi, Y., Bai, E., Sun, T., Chen, D., Zhou, W., Zhang, Y., Guo, Y., Zhu, J., Duan, L., Li, D., Koba, K., Du, E., Zhou, G., Han, X., Han, S., Fang, Y. (2022). Retention of deposited ammonium and nitrate and its impact on the global forest carbon sinks. Nature Communications. 13, 880.

16) Liu, Z., Liu, S., Gao, D.*, Li, Y., Tian, Y., Bai, E.* (2022). An optical sensing platform for beta glucosidase activity using protein inorganic hybrid nanoflowers. Journal of Fluorescence. 32, 669–680.

17) Chen, Y., Zhang, Y., Bai, E., Piao, S., Chen, N., Zhao, G., Zheng, Z., Zhu, Y. (2021). The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition. Science of the Total Environment. 813(311):151907.

18) Sang, C. #, Xia, Z.*, Sun, L. #, Sun, H., Jiang, P., Wang, C. #*, Bai, E. (2021). Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest. Ecological Processes. 10, 66.

19) Sun, J., Wang, C.#*, Yu, H., Liu, D., Houlton, B., Wang, S., Zeng, X.*, Bai, E., Fang, Y., Jia, Y. (2021). Biotic and abiotic controls on dinitrogen production in coastal sediments. Global Biogeochemical Cycles. doi: 10.1029/2021GB007069

20) Wang, X.#, Dai, W., Filley, T., Wang, C.#, Bai, E.* (2021). Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry. 161: 108381.

21) Gao, D. #, Liu, Z.*, Bai, E.* (2021). Effects of in situ freeze-thaw cycles on winter soil respiration in mid-temperate plantation forests. Science of the Total Environment. 793: 148567.

22) Gao, D. #, Bai, E.*, Yang, Y., Zong, S., Hagedorn, F. (2021). A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling. Soil Biology and Biochemistry. 159: 108283.

23) Zhang, Y.*, Pan, B., Lam, S.*, Bai, E., Hou, P., Chen, D. (2021). Predicting the ratio of nitrification to immobilization to reflect the potential risk of nitrogen loss worldwide. Environmental Science and Technology, 55(11):7721-7730.

24) Dai, W., Peng, B. #, Liu, J. #, Wang, C. #, Wang, X. #, Jiang, P, Bai E. * (2021). Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry. 154:371–383.

25) Fan, X.#, Gao, D. #, Zhao, C., Wang, C. #, Qu, Y., Zhang, J., Bai E. * (2021). Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. The ISME Journal. 15: 2248–2263.

26) Wang, C.#, Qu, L. #, Yang, L., Liu, D., Morrissey, E., Miao, R., Liu, Z., Wang, Q., Fang, Y., Bai, E.* (2021). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology. 27: 2039-2048.

27) Gao, D. #, Joseph, J., Werner, R.A., Brunner, I., Zurcher, A., Hug, C., Wang, A., Zhao, C., Bai, E., Meusburger, K., Gessler, A., Hagedorn, F.* (2021). Drought alters the carbon footprint of trees in soils-tracking the spatio-temporal fate of 13C-labelled assimilates in the soil of an old-growth pine forest. Global Change Biology. 27: 2491-2506.

28) Sanaei, A., Ali, A., Yuan, Z.*, Liu, S., Lin, F., Fang, S., Ye, J., Hao, Z., Loreau, M., Bai, E., Wang, X.* (2021). Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality. Science of the Total Environment. 757: 143724.

29) Yuan, Z., Ali, A., Sanaei, A., Ruiz-Benito, P., Jucker, T., Fang, L., Bai, E., Ye, J., Lin, F., Fang, S., Hao, Z., Wang, X.* (2021). Few large trees, rather than plant diversity and acomposition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. Forest Ecology and Management. 481: 118698

30) Xia, Z., Yang, J.#, Sang, C.#, Wang, X.#, Sun, L.#, Jiang, P., Wang, C.#*, Bai, E. (2020). Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms. 8:1828.

31) Dai, W., Bai, E.*, Li, W., Jiang, P., Dai, G., Zheng, X. (2020). Predicting plant–soil N cycling and soil N2O emissions in a Chinese old-growth temperate forest under global changes: uncertainty and implication. Soil Ecology Letters, 2, 73–82.

32) Chang, Q.†, Qu, G.#†, Xu, W., Wang, C.#, Cheng, W., Bai, E.* (2020). Light availability controls rhizosphere priming effect of temperate forest trees. Soil Biology and Biochemistry. 148:107895 (†: equal contribution)

33) Gao, D.#, Bai, E.*, Li, M., Zhao, C., Yu, K., Hagedorn, F. (2020). Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: A meta-analysis. Soil Biology and Biochemistry. 148:107896

34) Wang, X. #, Wang, C. #,*, Cotrufo, M., Sun, L., Jiang, P., Liu, Z., Bai, E.* (2020). Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Global Change Biology. 26:5277–5289.

35) Qu, L. #, Wang, C. #*, Bai, E.* (2020). Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology and Biochemistry. 20:107802

36) Pei, G.#, Liu, J.#, Peng, B.#, Wang, C.#, Jiang, P., Bai, E.* (2020). Non-linear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences. e2019JG005462

37) Wang, C. #, Wang, X. #, Pei, G. #, Xia, Z., Peng, B. #, Sun, L. #, Wang, J., Gao, D. #, Chen, S., Liu, D., Dai, W., Jiang, P., Fang, Y., Liang, C., Wu, N., Bai, E. * (2020). Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry. 141:107687.

38) Zhang, W., Zhang, X., Bai, E., Cui, Y., He, H. *, Zhang, X. * (2019). The strategy of microbial utilization of the deposited N in a temperate forest soil. Biology and Fertility of Soils. 56, 359–367.

39) Liu, Z.*, Tian, Y., Han, Y., Bai, E. *, Li, Y., Xu, Z., Liu, S* (2019). A “turn off-on” fluorescent nanoprobe consisting of CuInS2 quantum dots for determination of the activity of β-glucosidase and for inhibitor screening. Microchimica Acta. 186:806. (IF: 5.479)

40) Houlton, B. *, Almaraz, M., Aneja, V., Austin, A., Bai, E., Cassman, K., Compton, J., Davidson, E., Erisman, J., Galloway, J., Gu, B., Yao, G., Martinelli, L., Scow, K., Schlesinger, W., Tomich, T., Wang, C. #, Zhang, X. (2019). A world of cobenefits: Solving the global nitrogen challenge. Earth’s Future. 7, 865–872.

41) Sun, L. #, Xia, Z.*, Sang, C. #, Wang, X. #, Peng, B. #, Wang, C. #, Zhang, J., Muller, C., Bai, E.* (2019). Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture. Biology and Fertility of Soils. 55: 629-641.

42) Pei, G.#, Liu, J.#, Peng, B.#, Gao, D.#, Wang, C. #, Dai, W. #, Jiang, P., Bai, E.* (2019). Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. Forest Ecology and Management. 440, 61-69.

43) Peng, B. #, Sun, J. #, Liu, J. #, Dai, W., Sun, L#., Pei, G. #, Gao, D. #, Wang, C#., Jiang, P., Bai, E.* (2019). N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of the Total Environment. 648, 350-357.

44) Wang, H.#, Hu, G., Xu, W., Boutton, T., Zhuge, Y., Bai, E.* (2018). Effects of nitrogen addition on soil organic carbon mineralization after maize stalk addition. European Journal of Soil Biology. 89, 33–38.

45) Kong, J., Yang, J. *, Bai, E. (2018). Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest. Science of the Total Environment. 642, 1353 – 1361.

46) Gao, Q., Bai, E, Wang, J., Zheng, Z., Xia, J. *, You, W. * (2018). Effects of litter manipulation on soil respiration under short-term nitrogen addition in a subtropical evergreen forest. Forest Ecology and Management. 429, 77-83.

47) Sun, J. #, Dai, W., Peng, B. #, Liu, J. #, He, T., Jiang, P., Han, S., Bai, E.* (2018). Does the accelerated soil N cycling sustain N demand of Quercus mongolica after decade-long elevated CO2 treatment? Biogeochemistry. 139: 197-213.

48) Gao, D. #, Hagedorn, F., Zhang, L., Liu, J. #, Qu, G. #, Sun, J. #, Peng, B. #, Fan, Z. #, Zheng, J., Jiang, P., Bai, E.* (2018). Small and transient response of winter soil respiration and microbial communities to altered snow depth in a mid-temperate forest. Applied Soil Ecology. 130: 40-49.

49) Almaraz, M. *, Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., Houlton, B. (2018). Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NOx emissions. Science Advances. 4 (9), eaau7373.

50) Lu, X., Vitousek, P. *, Mao, Q., Gilliamd, F., Luo, Y., Zhou, G., Zou, X., Bai, E., Scanlonh, T., Hou, E., Mo, J. * (2018). Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. PNAS. 115 (20) 5187-5192.

51) Wang, C.#, Liu, D., Bai, E.* (2018). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry. 120, 126-133.

52) Almaraz, M.† *, Bai, E.†, Wang, C., Trousdell, J., Conley, S., Faloona, I., Houlton, B. (2018). Agriculture is a major source of NOx pollution in California. Science Advances. 4: 1, eaao3477. (†: equal contribution)

53) Wang. C.#, Houlton, B., Liu, D., Hou, J., Cheng, W. Bai, E.* (2018). Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences. 15, 987-995.

54) Gao, D. #, Zhang, L., Liu, J. #, Peng, B. #, Fan, Z. #, Dai, W., Jiang, P, Bai, E.* (2018). Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze‐thaw cycle: a meta‐analysis. Global Change Biology. 24:2377–2389.

55) Gao, D.#, Peng, B.#, Fan, Z.#, Pei, G.#, Bai, E.* (2018). Different winter soil respiration between two mid-temperate plantation forests. Forest Ecology and Management. 409: 390-398.

56) Zhang, H., Lü, X., Knapp, A., Hartmann, H., Bai, E., Wang, X., Wang, Z., Wang, X., Yu, Q., Han, X.* (2018). Facilitation by leguminous shrubs increases along a precipitation gradient. Functional Ecology. 32:203–213.

57) Sun, J. #, Xia, Z., He, T., Dai, W., Peng, B. #, Liu, J. #, Gao, D. #, Jiang, P., Han, S., Bai, E.* (2017). Ten years of elevated CO2 affects soil greenhouse gas fluxes in an open top chamber experiment. Plant and Soil. 420:435–450.

58) Wei, M., Hu, G., Wang, H.#, *, Bai, E., Luo, Y., Zhang, A., Zhuge, Y*. (2017). 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. European Journal of Soil Biology. 82: 27-34.

59) Wang, C.#, Wei, H., Liu, D., Luo, W., Hou, J., Cheng, W., Han, X., Bai, E.* (2017). Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil. 417: 43-52.

60) Wang, C.#, Houlton, B., Dai, W., Bai, E.* (2017). Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Science of the Total Environment. 574, 1044-1053.

61) Liu, D., Zhu, W., Wang, X., Pan, Y., Wang, C.#, Xi, D., Bai, E., Yang, Y., Han, X., Fang, Y*. (2017). Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200km transect. Biogeosciences. 14, 989–1001.

62) Liu, W., Wang, S*., Luo, W., Dai, W., Bai, E. (2017). Characteristics of soil water movement in a grass slope in a karst peak‐cluster region, China. Hydrological Processes. 31(6):1331-1348.

63) Liu, J. #, Wang, C. #, Peng, B. #, Xia, Z., Jiang, P., Bai, E.* (2017). Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components. Plant and Soil. 412: 453–464.

64) Liu, J. #, Peng, B. #, Xia, Z., Sun, J. #, Gao, D. #, Dai, W., Jiang, P., Bai, E.* (2017). Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: a 15N tracer study. Global Change Biology. 23(6):2441-2449.

65) Liu, J. #, Wu, N. #, Wang, H. #, Sun, J. #, Peng, B. #, Jiang, P., Bai, E.* (2016). Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology. 97(7):1796-1806.

66) Li, W., Wu, J., Bai, E., Guan, D., Wang, A., Yuan, F., Wang, S., Jin, C*. (2016). Response of terrestrial nitrogen dynamics to snow cover change: A meta-analysis of experimental manipulation. Soil Biology and Biochemistry. 100, 51-58.

67) Li, W., Wu, J., Bai, E., Jin, C., Wang, A., Yuan, F., Guan, D.* (2016). Response of terrestrial carbon dynamics to snow cover change: A meta-analysis of experimental manipulation (II). Soil Biology and Biochemistry. 103, 388-393.

68) Zhang, W., Cui, Y. Lu, X., Bai, E., He, H., Xie, H., Liang, C., Zhang, X.* (2016). High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem. Soil Biology and Biochemistry. 97, 211-214.

69) Wang, C. #, Liu, D., Luo, W., Fang, Y., Wang, X., Lü, X., Jiang, Y., Han, X., Bai, E.* (2016). Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology. 9(5): 576–585.

70) Xia, Z., Bai, E.*, Wang, Q., Gao, D. #, Zhou, J., Jiang, P., Wu, J. (2016). Biogeographic distribution patterns of bacteria in typical Chinese forest soils. Frontiers in Microbiology. 7: 1106.

71) Suo, Y., Yuan, Z., Lin, F., Wang, X., Ye, J., Bai, E., Hao, Z. * (2016). Local-scale determinants of elemental stoichiometry of soil in an old-growth temperate forest. Plant and Soil. 408: 401-414.

72) Luo, W., Sardans, J., Dijkstra, F., Peñuelas, J., Lü, X., Wu, H., Li, M., Bai, E., Wang, Z., Han, X., Jiang, Y. * (2016). Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant and Soil. 409: 159–173.

73) Sun, J. #, Peng, B. #, Li, W. #, Qu, G. #, Dai, W., Dai, G., Jiang, P., Han, S., Bai, E.* (2016). Effects of nitrogen addition on potential soil nitrogen cycling processes in a temperate forest ecosystem. Soil Science. 181 (1), 29-38.

74) Luo, W., Dijkstra, F., Bai, E., Feng, J., Lü, X., Wang, C.#, Wu, H., Li, M., Han, X., Jiang, Y.* (2016). A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry. 1: 141-153.

75) Luo, W., Elser, J. J., Lv, X., Wang, Z., Bai, E., Yan, C., Wang, C. #, Li, M., Zimmermann, N. E., Han, X., Xu, Z., Li, H., Wu, Y., Jiang, Y.* (2015). Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles. 29, 1298–1308.

76) Wang, H.#, Boutton, T. W., Xu, W., Hu, G., Jiang, P., Bai, E.* (2015). Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Scientific Reports. 5, 10102.

77) Wang, H.#, Xu, W., Hu, G., Dai, W., Jiang, P., Bai, E.* (2015). The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest. Oecologia. 178(4):1239-50.

78) Houlton, B. Z. *, Marklein, A. R., and Bai, E. (2015). Representation of nitrogen in climate change forecasts. Nature Climate Change. 5. 398–401.

79) Fang, Y., Koba, K.*, Makabe, A., Takahashi, C., Zhu, W., Hayashi, T., Hokari, A.A., Urakawa, R., Bai, E., Houlton, B.Z., Xi, D., Zhang, S., Matsushita, K., Tu, Y., Liu, D., Zhu, F., Wang, Z., Zhou, G., Chen, D., Makita, T., Toda, H., Liu, X., Chen, Q., Zhang, D., Li, Y., Yoh, M. (2015). Microbial denitrification dominates nitrate losses from forest ecosystems. PNAS. 112 (5): 1470–1474.

80) Wu, N. #, Filley, T., Bai, E.*, Han, S., Jiang, P. (2015). Incipient changes of lignin and substituted fatty acids under N addition in a Chinese forest soil. Organic Geochemistry. 79: 14-20.

81) Wang, C.#, Wang, X., Liu, D., Wu, H., Lü, X., Fang, Y., Cheng, W., Luo, W., Jiang, P., Shi, J., Yin, H., Zhou, J., Han, X.*, Bai, E.* (2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications. 01/2014; 5:4799.

82) Xu, W., Li, W. #, Jiang, P., Wang, H. #, Bai, E.* (2014). Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil. Scientific Reports. 4:6512 DOI:10.1038/srep06512.

83) Bai, E.*, Li, W. #, Li, S. #, Sun, J. #, Peng, B. #, Dai, W., Jiang, P., Han, S. (2014). Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, Northeast China. PLoS ONE. 01/2014; 9(7):e102765.

84) Wei, C., Yu, Q., Bai, E., Lv, X., Li, Q., Xia, J., Kardol, P., Liang, W., Wang, Z., Han, X.* (2013). Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology. 19, 3688–3697.

85) Liu, F.*, Archer, S., Gelwick, F., Bai, E., Boutton, T.W., Wu, B. (2013). Woody plant encroachment into grasslands: Spatial patterns of functional group distribution and community development. PLoS ONE. 8(12): e84364.

86) Luo, W., Jiang, Y., Lu, X., Wang, X., Li, M., Bai, E., Han, X. Xu, Z. * (2013). Patterns of plant biomass allocation in temperate grasslands across a 2500-kmtransect in northern China. PLoS ONE. 8(8): e71749.

87) Xia, Z., Xu, H. *, Chen, G., Dong, D., Bai, E., Luo, L. (2013). Soil N2O production and the δ15N–N2O value: Their relationship with nitrifying/denitrifying bacteria and archaea during a growing season of soybean in northeast China. European Journal of Soil Biology. 58, 73-80.

88) Bai, E. †*, Li, S. †#, Xu, W., Li, W., Dai, W., Jiang, P. (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist. 199, 441-451. (†: equal contribution)

89) Bai, E.*, Boutton, T.W., Liu, F., Wu, X.B., Archer, S.R. (2013). 15N isoscapes in a subtropical savanna parkland: spatial-temporal perspectives, Ecosphere. 4(1):4.

90) Bai, E.*, Houlton, B.Z., Wang, Y.P. (2012). Isotopic identification of nitrogen hotspots across natural terrestrial Ecosystems. Biogeosciences. 9, 3287-3304.

91) Bai, E.*, Boutton, T.W., Liu, F., Wu, X.B., Hallmark, C.T., Archer, S.R. (2012). Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biology and Biochemistry. 44, 102–112.

92) Bai, E.*, Boutton, T.W., Liu, F., Wu, X.B., Archer, S.R. (2012). Spatial patterns of soil δ13C reveal grassland-to-woodland successional processes. Organic Geochemistry. 42, 1512–1518.

93) Liu, F.*, Wu, X.B., Bai, E., Boutton, T.W., Archer, S.R. (2011). Quantifying soil organic carbon in complex landscapes: an example of grassland undergoing encroachment of woody plants. Global Change Biology. 17, 1119–1129.

94) Liu, F.*, Wu, X.B., Bai, E., Boutton, T.W., Archer, S.R. (2010). Spatial scaling of ecosystem C and N in a subtropical savanna landscape. Global Change Biology. 16, 2213–2223.

95) Bai, E.*, Houlton, B.Z. (2009). Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests. Global Biogeochemical Cycles. 23, GB2011, doi:10.1029/2008GB003361.

96) Bai, E.*, Boutton, T.W., Wu, X.B., Liu, F., Archer, S.R. (2009). Landscape-scale vegetation dynamics inferred from spatial patterns of soil δ13C in a subtropical savanna parkland. Journal of Geophysical Research. 114, G01019, doi:10.1029/2008JG000839.

97) Bai, E.*, Boutton, T.W., Liu, F., Wu, X.B., Archer, S.R., Hallmark, C.T. (2009). Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia. 159:493-503.

98) Houlton, B.Z.*, Bai, E. (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. PNAS. 106, 21713–21716.

99) Bai, E.*, Boutton, T.W., Liu, F., Wu, X.B., Archer, S.R. (2008). Variation in woody plant δ13C along a topoedaphic gradient in a subtropical savanna parkland. Oecologia. 156:479-489.

 

* 通讯作者; 井:指导学生

 

社会职务:

Subject Editor: Global Change Biology (2021-至今)

Associate Editor: Ecology Letters (2022-至今)

Global Biogeochemical Cycles (2022-至今)

Biogeochemistry (2016-至今)

编委:

Journal of Plant Ecology (2015-至今)

Soil Ecology Letters (2019-至今)

Ecological Processes (2012-至今)

Chinese Geographical Science (2022-至今)

Frontiers in Forests and Global Change (2019-至今)

Scientific Reports (2015-2019)

植物生态学报 (2016-至今)

应用生态学报 (2014-2020)

吉林省地理学会副理事长

 

授课:

现代自然地理学方法,东北师范大学 (2018年-至今)

科技论文写作 ,东北师范大学(2018年-至今)

博士生英文论文写作,中国科学院沈阳应用生态研究所(2011年-2016年)